32. S.Y. Hong, Y.H. Lee, H. Park, S.W. Jin, Y.R. Jeong, J. Yun, I. You, G. Zi, J.S. Ha, Stretchable

active matrix temperature sensor array of polyaniline nanofibers for electronic skin, Adv.

Mater. 28 (2016) 930–935.

33. T.Q. Trung, N.E. Lee, Flexible and stretchable physical sensor integrated platforms for wearable

human-activity monitoringand personal healthcare, Adv. Mater. 28 (2016) 4338–4372.

34. M. Su, F. Li, S. Chen, Z. Huang, M. Qin, W. Li, X. Zhang, Y. Song, Nanoparticle based curve

arrays for multirecognition flexible electronics, Adv. Mater. 28 (2016) 1369–1374.

35. W.A.D.M. Jayathilaka, K. Qi, Y. Qin, A. Chinnappan, W. Serrano-García, C. Baskar, H. Wang,

J. He, S. Cui, S.W. Thomas, S. Ramakrishna, Significance of nanomaterials in wearables: A

review on wearable actuators and sensors, Adv. Mater. 31 (2019) 1–21.

36. S.Y. Kim, S. Park, H.W. Park, D.H. Park, Y. Jeong, D.H. Kim, Highly sensitive and multi­

modal all-carbon skin sensors capable of simultaneously detecting tactile and biological

stimuli, Adv. Mater. 27 (2015) 4178–4185.

37. D.H. Kim, J.A. Rogers, Stretchable electronics: Materials strategies and devices, Adv. Mater.

20 (2008) 4887–4892.

38. S. Baek, H. Jang, S.Y. Kim, H. Jeong, S. Han, Y. Jang, D.H. Kim, H.S. Lee, Flexible piezo­

capacitive sensors based on wrinkled microstructures: Toward low-cost fabrication of

pressure sensors over large areas, RSC Adv. 7 (2017) 39420–39426.

39. M. Ha, J. Park, Y. Lee, H. Ko, Triboelectric generators and sensors for self-powered wearable

electronics, ACS Nano. 9 (2015) 3421–3427.

40. G.L. Biosensors, D. Sarkar, W. Liu, X. Xie, A.C. Anselmo, S. Mitragotri, K. Banerjee, MoS2

field-effect transistor for next-, ACS Nano. 8(2014) 3992–4003.

41. E. Rahmanian, C.C. Mayorga-Martinez, R. Malekfar, J. Luxa, Z. Sofer, M. Pumera, 1T-phase

tungsten chalcogenides (WS2, WSe2, WTe2) decorated with TiO2 nanoplatelets with enhanced

electron transfer activity for Biosensing applications, ACS Appl., Nano Mater. 1 (2018) 7006–7015.

42. D.-W. Park, A.A. Schendel, S. Mikael, S.K. Brodnick, T.J. Richner, J.P. Ness, M.R. Hayat,

F. Atry, S.T. Frye, R. Pashaie, S. Thongpang, Z. Ma, J.C. Williams, Graphene-based carbon-

layered electrode array technology for neural imaging and optogenetic applications, Nat.

Commun. 5 (2014) 5258.

43. M.K. Lyons, Deep brain stimulation: Current and future clinical applications, Mayo Clin.

Proc. 86 (2011) 662–672.

44. R. Chen, A. Canales, P. Anikeeva, Neural recording and modulation technologies, Nat. Rev.

Mater. 2 (2017) 1–16.

45. I.R. Minev, P. Musienko, A. Hirsch, Q. Barraud, N. Wenger, E.M. Moraud, J. Gandar, M.

Capogrosso, T. Milekovic, L. Asboth, R.F. Torres, N. Vachicouras, Q. Liu, N. Pavlova, S.

Duis, A. Larmagnac, J. Vörös, S. Micera, Z. Suo, G. Courtine, S.P. Lacour, Electronic dura

mater for long-term multimodal neural interfaces, Science. 347(80) (2015) 159–163.

46. Y. Sun, J.A. Rogers, Inorganic semiconductors for flexible electronics, Adv. Mater. 19 (2007)

1897–1916.

47. B. Shi, Z. Liu, Q. Zheng, J. Meng, H. Ouyang, Y. Zou, D. Jiang, X. Qu, M. Yu, L. Zhao, Y. Fan,

Z.L. Wang, Z. Li, Body-integrated self-powered system for wearable and implantable ap­

plications, ACS Nano. 13 (2019) 6017–6024.

48. K. Zhang, J.H. Seo, W. Zhou, Z. Ma, Fast flexible electronics using transferrable silicon na­

nomembranes, J. Phys. D. Appl. Phys. 45 (2012) 143001.

49. H.P. Phan, Y. Zhong, T.K. Nguyen, Y. Park, T. Dinh, E. Song, R.K. Vadivelu, M.K. Masud,

J. Li, M.J.A. Shiddiky, D. Dao, Y. Yamauchi, J.A. Rogers, N.T. Nguyen, Long-lived, trans­

ferred crystalline silicon carbide nanomembranes for implantable flexible electronics, ACS

Nano. 13 (2019) 11572–11581.

50. J. Millan, P. Godignon, X. Perpina, A. Perez-Tomas, J. Rebollo, A survey of wide bandgap

power semiconductor devices, IEEE Trans. Power Electron. 29 (2014) 2155–2163.

51. D. Vogel, P. Kriiger, J. Pollmann, electronic-structure calculations for, Ab initio electronic

structure calculations for IIVI semiconductors using selfinteractioncorrected pseudopo­

tentials, Phys. Rev. 52 (1995) 316–319.

200

Bioelectronics